
Bias-Variance Decomposition of the Mean-Square

Deviation of the LMS Algorithm: Transient and

Steady-State Analysis

Daniel G. Tiglea1*, Renato Candido1† and Magno T.M. Silva1†

1*Electronic Systems Engineering Department, University of São Paulo,
Avenida Prof. Luciano Gualberto, trav. 3, no. 158, São Paulo,

05508-010, São Paulo, Brazil.

*Corresponding author(s). E-mail(s): dtiglea@lcs.poli.usp.br;
Contributing authors: renatocan@lps.usp.br; magno@lps.usp.br;

†These authors contributed equally to this work.

Abstract

In this paper, we perform the bias-variance decomposition of the mean-square
deviation of the least-mean-squares algorithm during both the transient and
steady-state phases. Although this solution has been extensively studied, to the
best of our knowledge, this type of analysis has not been done before explicitly
in this manner. We analyze a wide range of scenarios, including cases in which
the filter length is not equal to that of the optimal solution and situations in the
presence of impulsive noise. The conclusions thus obtained provide novel insights
into the inner workings of the algorithm, and are supported by simulations. More-
over, we conduct experiments with real-world data considering an acoustic echo
cancellation application, which show that the theoretical model thus obtained
may perform reasonably well even when many of the assumptions made in the
analysis do not hold.

Keywords: Adaptive filtering, bias-variance decomposition, least-mean-squares,
mean-square deviation, transient analysis
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1 Introduction

Adaptive filtering algorithms have been widely applied in several signal processing
applications, including channel equalization [44, 55], acoustic echo cancellation [10,
11], active noise control [40, 41], and biomedical engineering [28, 59]. Among these
solutions, the least-mean-squares (LMS) algorithm is one of the most popular, due to
its relative simplicity [13, 23, 46]. As a result, the LMS algorithm has been extensively
studied in the literature (see, e.g., [6, 7, 13, 15, 22, 23, 37–39, 46, 49, 57] and their
references).

In order to assess the performance of adaptive filtering algorithms, a commonly
adopted metric is the mean-square deviation (MSD) [13, 23, 39, 46]. In this paper,
we carry out the bias-variance decomposition [9, 14, 18, 35] of the MSD of the LMS
algorithm during both the transient and steady-state phases. Despite the prolonged
interest in adaptive filters, to the best of our knowledge, this is the first time in
which explicit theoretical expressions are obtained for both terms along the iterations.
By doing so, we can gather new qualitative insights into how the LMS algorithm
works from the perspective of statistics. We also examine scenarios in which the filter
length does not perfectly match that of the optimal solution. The analysis shows that,
although there is an evident trade-off between the bias and variance terms in regards
to the step size, their behavior in relation to the filter length is not as straightforward,
assuming that the length of the optimal solution remains fixed. We also investigate
the effects of impulsive noise, and show that the total noise variance is the key factor
when it comes to the behavior of the bias and variance terms, regardless of the noise
distribution. Furthermore, our analysis agrees with classical results, although obtained
via a different route, and is supported by simulation results.

1.1 Relation with Other Works and Contributions

The fact that the MSD can generally be divided in two terms, one related to the bias,
and another one to the variance of the estimates, has been noted before. However,
the ways in which this notion has been explored in the literature are different from
the direction considered in this paper. For example, bias-compensated versions of the
LMS algorithm have been proposed in the literature [29, 50, 53], attracting significant
attention in recent years and leading to the emergence of several state-of-the-art solu-
tions [12, 26, 36, 45, 56]. In particular, the algorithm of [29] was analyzed in [42, 43].
However, these solutions are mostly concerned with the case in which the adaptive
filter input signal is corrupted by additive noise. Under these circumstances, it can be
shown that the optimal solution achieved by gradient descent and stochastic gradi-
ent descent algorithms with noisy input is biased in relation to the optimal solution
that would be obtained with the “clean” input signal. Thus, these bias-compensated
algorithms seek to modify the update rule of the conventional adaptive filters, such
as the standard LMS, in order to make up for the presence of noise in the input.
This differs from the situation considered here, in which we assume that the input
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signal of the adaptive filter is not corrupted by any type of noise. Instead, our goal
is to understand how the bias of the estimates evolves along the iterations, as well as
their variance. Moreover, we remark that the analyses presented in [42, 43] focus on
the bias-compensated algorithm of [29], whereas ours is aimed at the transient and
steady-state phases of the conventional LMS algorithm.

Another example in which the bias-variance trade-off is taken into account in the
adaptive filtering literature is the algorithm proposed in [35]. In this work, the authors
modify the LMS algorithm in order to deliberately introduce a bias in its estimate so
as to obtain an overall smaller steady-state excess mean-square error (EMSE). Simply
put, this bias is adapted along the iterations with the goal of minimizing the steady-
state EMSE based on an analogy with the convex combination of adaptive filters [2, 4].
Besides proposing a new algorithm, in [35] the authors also analyze the steady-state
performance of their solution. However, they do not analyze the evolution of the bias
and variance components of the MSD of the conventional LMS algorithm along the
iterations, as we do in this paper. Other works with similar approaches to that of [35]
have been published [3, 17, 48], but in none of them the analysis presented in this
paper is carried out.

Finally, it is worth noting that the notion of bias and variance has also been
explored to propose variable step-size (VSS) algorithms. For instance, in [33], the
authors propose a VSS algorithm for tracking the optimal solution in nonstationary
environments, which results in a weighting vector lag. This technique is based on
an analysis presented in [24], in which the steady-state MSD of the LMS algorithm
is broken down into three terms in such environments: one due to the bias of the
weighting vector lag, another one due to the presence of additive noise, and a third
one associated with the lag variance. Thus, the goal of the VSS algorithm of [33] is to
seek, in an adaptive manner, the optimal step size that can minimize the overall sum
of these three terms.

Despite the differences between the works mentioned and the present paper, they
all illustrate the potential gains arising from a deeper knowledge about the behavior
of the bias and variance of the estimates of adaptive filters. Thus, we believe that the
analysis presented in this work may be of interest to a wide range of researchers in
the field. Next, we provide a list of the contributions of the paper.

• New approaches and perspectives for the theoretical analysis of the LMS
algorithm. By carrying out the bias-variance decomposition of the MSD of the
LMS algorithm along the iterations, we seek to offer a different approach than
usual to examine its transient performance. The results obtained agree with existing
results [13, 23, 38, 46], although obtained in a different manner, and thus enable a
different perspective on why the MSD curves typically behave the way they do.

• Connections with the machine learning field. The bias-variance decomposi-
tion is oftentimes used in the machine learning field [9] due to the “bias-variance
dilemma”: more flexible models may be capable of capturing interesting and impor-
tant trends in the data, but are comparatively more susceptible to over-fitting than
more rigid models. Thus, when comparing these types of model, the former ones
tend to present a low bias and a high variance, whereas the latter ones typically
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present a high bias and lower variance [9]. Extending this type of analysis to adap-
tive filters may be useful to researchers in both fields, since it establishes yet another
bridge between them, with many similarities and analogies that can be exploited in
the future.

• A helpful tool for the design of future solutions. We discuss how the analysis
presented may aid in the design of novel solutions, such as VSS algorithms [1, 5,
8, 20, 27, 33, 34, 52, 58], for example. We remark, however, that proposing such a
solution is out of the scope of the present paper.

• Impact of filter length mismatch. We also investigate what occurs with the bias
and variance of the MSD when the length of the adaptive filter is not equal to that
of the unknown system that we wish to estimate. It is well known that in such cases
the performance is degraded in comparison with the scenario in which they match
perfectly. The analysis presented provides an explanation for this phenomenon in
terms of the bias and variance of the estimates. Moreover, we believe that this could
support the proposal of novel variable tap-length adaptive filters in the future [30–
32].

• Effects of impulsive noise. The analysis presented also holds for scenarios in the
presence of impulsive noise, which oftentimes occur in practical applications.

• Simulations with real-world data. We validate the theoretical model in a wide
range of scenarios, including one with real-world speech signals as the input to the
adaptive filter in an acoustic echo cancellation (AEC) application. We believe that
this further adds value to the present paper, given the relevance of AEC in the
literature as well as in practical applications [10, 11, 13, 23, 46].

1.2 Organization of the Paper and Notation

The remainder of the paper is organized as follows. In Sec. 2, we present the problem
formulation. In Sec. 3, we perform the bias-variance decomposition of the MSD of the
LMS algorithm. The simulation results are presented in Sec. 4, and Sec. 5 closes the
paper with the main conclusions.

We use normal font letters for scalars, boldface lowercase letters for vectors, and
boldface uppercase letters for matrices. Moreover, (·)T denotes transposition, IL the
L × L identity matrix, 0L an L-length vector of zeros, 0M×L an M × L matrix of
zeros, log(·) the natural logarithm, ⌊·⌉ the rounding to the nearest integer, E{·} the
mathematical expectation, | · | the absolute value, Tr[·] the trace of a matrix, U(a, b) a
uniform distribution in the range [a, b], and ∥·∥ the Euclidean norm. To simplify the
arguments, we assume real data throughout the paper.

2 Problem Formulation

Let us consider anM -tap adaptive filter with a finite impulse response (FIR) structure,
input signal u(n), and desired signal d(n) given by

d(n) = uT
L(n)w

o + v(n), (1)
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where wo = [wo
1 wo

2 · · · wo
L] is an L-length vector that represents an unknown system

to be estimated, uL(n)=[u(n) u(n−1) · · · u(n−L+1)]T is the input regressor vector,
and v(n) is the measurement noise [23, 46]. The vector wo is oftentimes referred to as
the “optimal solution” in the adaptive filtering literature [13, 23, 46]. Let us denote the
estimate of wo produced by the algorithm at time instant n by the M -length column
vector w(n). Then, the update equation of the LMS algorithm is given by [23, 46]

w(n) = w(n− 1) + µuM (n)e(n), (2)

where uM (n)=[u(n) u(n− 1) · · · u(n−M + 1)]T,

e(n)=d(n)−uT
M (n)w(n−1) (3)

is the estimation error, and µ>0 is a step size [23, 46].
A commonly adopted performance indicator for adaptive filters is the MSD.

Assuming that M = L, its expression at a certain iteration n is given by

MSD(n) ≜ E{∥w̃(n)∥2}, (4)

in which
w̃(n) ≜ wo −w(n) (5)

is the weight vector error of the algorithm [23, 46].
If M < L, Eq. (5) can be adapted by making

w̃(n) ≜ wo − ω(n) (6)

where ω(n) is obtained by applying zero padding to w(n) so as to obtain an L-length
vector, i.e., ω(n) = [w(n) 0L−M ]T. In contrast, if M > L, we need to apply zero
padding to the vector wo. Denoting the resulting vector by ωo = [wo 0M−L], (5) can
be recast as

w̃(n) ≜ ωo −w(n). (7)

3 Bias-Variance Decomposition

Let us denote the covariance matrix of w̃(n) by

C(n)≜E
{
[w̃(n)−E{w̃(n)}][w̃(n)−E{w̃(n)}]T

}
. (8)

Applying the bias-variance decomposition for vectors to the MSD of (4), it can be
recast as [35]

E
{
∥w̃(n)∥2

}
= ∥E{w̃(n)}︸ ︷︷ ︸

bias

∥2 +Tr[ C(n)︸ ︷︷ ︸
covariance matrix

]. (9)

This result is obtained in the Appendix at the end of this paper. The transient analysis
of the MSD of the LMS algorithm has been performed, e.g., in [23, 39, 46]. However,
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the impact of each term in the right-hand side (rhs) of (9) has not been analyzed indi-
vidually. Next, we study how each of them evolves separately over time. Throughout
this paper we adopt the following assumptions:

A1. v(n) is independent and identically distributed (iid) along the iterations with zero
mean and variance σ2

v , and is independent from any other signal;
A2. w̃(n− 1) is statistically independent from uM (n);
A3. The input signal u(n) is white Gaussian, which leads to RL ≜ E{uL(n)u

T
L(n)} =

σ2
uIL and RM ≜ E{uM (n)uT

M (n)} = σ2
uIM , where σ2

u is the power of the input
signal;

A4. w(0) is initialized as a vector of zeros, i.e., w(0) = 0M .

Assumptions A1 and A2 are common in the adaptive filtering literature, with the
latter being known as the independence theory [23, 46]. In its turn, Assumption A3
shall greatly simplify the arguments henceforth. Finally, Assumption A4 corresponds
to a usual practice in the adaptive filtering field. It is worth noting that we are only
assuming Gaussianity for the input signal u(n), not for the measurement noise v(n).
As a result, so long as Assumption A1 holds, the analysis remains valid regardless of
the distribution of v(n), including scenarios with impulsive noise. We remark, however,
that even when the input signal is not Gaussian or not wide-sense stationary, our
theoretical model can work reasonably well, as will be shown in Sec. 4.

Next, we divide our analysis according to the three possible relations between M
and L. In Sec. 3.1, we examine the case in which M = L. In Secs. 3.2 and 3.3, we
extend the analysis to the case in which M < L and M > L, respectively. Finally, in
Sec. 3.4, we analyze the effects of the existence of impulsive noise on the theoretical
models obtained.

3.1 Case 1: M = L

We remark that in this case, the vectors uL(n) and uM (n) coincide. Thus, in this
section we make no distinction between them, and denote both of them by u(n) to
simplify the notation. The same reasoning is applied to the matrices RL = RM = R.

Let us begin by examining the term related to the bias. Subtracting both sides
of (2) fromwo, and replacing (1) and (3) in the resulting equation, after some algebraic
manipulations, we can see that the weight vector error of the LMS algorithm evolves
according to

w̃(n) = [IM − µu(n)uT(n)]w̃(n− 1)− µu(n)v(n). (10)
Under Assumptions A1 – A3, taking the expectations from both sides of (10), we
obtain

E{w̃(n)} = (1− µσ2
u)E{w̃(n− 1)}. (11)

As, from A4, w̃(0)=wo, the recursive application of (11) yields

E{w̃(n)} = (1− µσ2
u)

nwo. (12)

Squaring the Euclidean norm of (12), we obtain

∥E{w̃(n)}∥2 = (1− µσ2
u)

2n∥wo∥2, (13)
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which determines how the term related to the bias in (9) evolves. Although wo appears
in (13), we do not need to know it beforehand. Instead, only the knowledge of its norm
is required. In the adaptive filtering literature, it is not uncommon to assume that
∥wo∥2=1, which can be achieved by employing automatic gain control (see, e.g., [23]).

Let us now resume the analysis of the the trace of the covariance matrix C(n).
From Eq. (A3), located in the Appendix, we can see that

Tr [C(n)]=Tr[C(n)]−∥E{w̃(n)}∥2, (14)

where we have introduced

C(n) ≜ E{w̃(n)w̃T(n)}. (15)

From (10), under Assumption A1, we can write [39]

C(n) = E{w̃(n− 1)w̃T(n− 1)}−µE{u(n)uT(n)w̃(n−1)w̃T(n−1)}
− µE{w̃(n−1)w̃T(n−1)u(n)uT(n)}
+ µ2E{u(n)uT(n)w̃(n−1)w̃T(n−1)u(n)uT(n)}
+ µ2E{u(n)uT(n)v2(n)}.

(16)

Moreover, under A1 – A3, it can be shown that the fourth-order term in (16) is given
by [39]

E{u(n)uT(n)w̃(n−1)w̃T(n−1)u(n)uT(n)} = σ4
uTr{C(n−1)}IM+2σ4

uC(n−1). (17)

Replacing (17) in (16), we arrive at [39]

C(n)=C(n−1)−2µσ2
uC(n−1)+µ2[σ4

uTr{C(n−1)}IM+2σ4
uC(n−1)+σ2

vσ
2
uIM ]. (18)

Defining c(n) ≜ Tr[C(n)] and taking the trace of both sides in (18), we obtain

c(n)=αc(n− 1)+µ2Mσ2
uσ

2
v , (19)

where we have introduced

α ≜ 1−2µσ2
u+µ2(M+2)σ4

u (20)

for convenience. Observing that, under A4, c(0) = ∥wo∥2, replacing this result in (19),
and applying it recursively, after some algebraic manipulations, we arrive at

c(n) = αn∥wo∥2 + µ2Mσ2
uσ

2
v ·

(
1− αn

1− α

)
. (21)

Replacing (20) in the denominator of the second term in the rhs of (21), we obtain

c(n) = αn∥wo∥2 + χ(1− αn), (22)
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where

χ ≜
µMσ2

v

2− µ(M + 2)σ2
u

. (23)

Using (22) and (13) in (14), after some algebra, we finally arrive at

Tr[C(n)]=∥wo∥2[αn−(1− µσ2
u)

2n] + χ(1− αn). (24)

Examining (13) and (24), we arrive at some interesting conclusions. Firstly, at
the iteration n = 0, the norm of the bias, given by (13), coincides with that of the
optimal solution, and then decays exponentially, so long as 0 < µ < 2

σ2
u
. As a result,

the contribution of the norm of the bias should be more significant during the first
iterations of the transient phase, and vanish in steady state. In contrast, if we replace
n = 0 in (24), we can see that the trace of the covariance matrix is initially zero.
This is reasonable, since, from A4, w̃(0) = wo is deterministic. Hence, under typical
circumstances, the MSD is predominantly determined by the norm of the bias in the
first iterations of the transient phase. However, as n grows larger, Tr[C(n)] typically
begins to increase, up to a certain point. Differentiating (24) with respect to n and
setting the resulting equation to zero, we can conclude that the trace of the covariance
matrix reaches its peak around the iteration

np=

 log

( ∥wo∥2
∥wo∥2 − χ

)
+log

[
2 log(1−µσ2

u)

log(α)

]
log(α)−2 log(1−µσ2

u)

, (25)

so long as χ < ∥wo∥2. Otherwise, simulations suggest that Tr[C(n)] typically increases
and stabilizes without any noticeable peaks. We remark that (25) is only valid as an
approximation, since by differentiating Eq. (24) with respect to n we are treating n
as a continuous variable, which it is not. Regardless, as we shall see in Sec. 4, this
approach leads to satisfactory results. For typical values of µ, M , σ2

v , σ
2
u, and ∥wo∥2,

in the absence of impulsive noise, np corresponds to some point during the transient,
as will become clear in Sec. 4. Intuitively, the peak of the variance of the estimates
produced by the algorithm occurs at this time because they are sufficiently far from
the initial guess w(0)=0M , but have not fully converged in the mean to wo yet. Thus,
assuming that |α|<1, which occurs if

0 < µ < µmax =
2

(M + 2)σ2
u

, (26)

the trace of the covariance matrix begins to decrease for n>np, until it stabilizes at

lim
n→∞

Tr[C(n)] = χ. (27)
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This result is best known in the adaptive filtering literature as the steady-state MSD
of the LMS algorithm [23, 46], i.e.,

lim
n→∞

MSD(n) = χ. (28)

Therefore, contrary to what happens in the beginning of the transient, the MSD is
dominated during the steady state by the trace of the covariance matrix, as the norm
of the bias should be negligible at this point. Evidently, there is a time instant ns

at which the two terms switch places in terms of relevance. Equating the rhs of (13)
and (24), we can see that ns satisfies

∥wo∥2[2(1−µσ2
u)

2ns − αns ]+χαns =χ. (29)

There is no closed-form solution for (29), but the value of ns may be evaluated
numerically from this equation. After that, it must be rounded to the nearest integer.

We can also analyze the impact of the step size µ on the norm of the bias and on
the trace of the covariance matrix individually. In the adaptive filtering literature, it
is well known that large values of µ lead to a faster convergence rate, but deteriorate
the steady-state MSD [13, 23, 39, 46]. In contrast, if µ is small, the steady-state MSD
decreases, but the convergence rate slows down. From our analysis, we can see that
this trade-off is related to evolution of the bias and the variance. It is clear from (13)
that the smaller the step size, the slower the exponential decay of the norm of the bias.
However, we notice from (24) that the adoption of smaller step sizes also decreases the
variance of the estimates in steady state, which is reasonable, and also its peak value
at n = np. Conversely, higher values for µ lead to a fast reduction in the norm of the
bias, but overall increase the variance of the estimates in steady state and at n = np.
This is in accordance with observations made in, e.g., [51], where it was pointed out
that oftentimes the bias and the variance display opposite behaviors with respect to
parameters in statistical and adaptive signal processing. As for the impact of the filter
length, we can see that, for a fixed step size µ, and maintaining the assumption that
M = L, the value of M does not impact the rate at which the norm of the bias decays
in (13), so long as (26) holds. In contrast, the trace of the covariance matrix increases
with M . This implies that ns should be affected by both the step size and by the filter
length. Overall, ns decreases with the increase of µ and M , and can be significantly
affected by them. This is illustrated in Tab. 1, in which we show theoretical values
obtained for ns from (29), considering σ2

u = 1, σ2
v = 0.01, and different values for µ

and M . Although out of the scope for this paper, we believe that this information can
aid in the future design of VSS algorithms [1, 5, 8, 20, 27, 34, 52, 58]. For instance,
in [8], a VSS-normalized LMS algorithm was proposed that switches the step size
from a greater value to a smaller one after a certain number of iterations, based on
the predicted MSD. Using (29) and the analysis presented, a similar idea could be
employed, in order to gradually reduce the step size by switching it when the norm of
the bias is surpassed by the trace of the covariance matrix. Lastly, in Secs. 3.2 and 3.3,
it will be shown that, if M ̸= L, the behavior of the variance and of the bias with
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respect to M may not be so obvious, and depends on the characteristics of the optimal
solution.

Table 1: Values of ns obtained from (29) for
σ2
u = 1 and σ2

v = 0.01, and different values
for µ and M .

µ
M

10 20 30 40 50

0.01 344 266 203 159 130
0.005 796 694 614 541 473
0.001 4917 4545 4315 4143 4003

3.2 Case 2: M < L

To enable the comparison with wo, in this section we shall use the L-length weight
vector ω(n) = [w(n) 0L−M ]T described in Sec. 2. In this case, the update equation of
the LMS algorithm may be recast as

ω(n) = ω(n− 1) + SuL(n)
[
d(n)−uT

L(n)ω(n−1)
]
, (30)

where S is a block diagonal matrix given by

S =

[
µIM 0M×∆L

0∆L×M 0∆L×∆L

]
(31)

with ∆L ≜ L−M .
Subtracting both sides of (30) from wo, we obtain after some manipulations

w̃(n) = [IL − SuL(n)u
T
L(n)]w̃(n− 1)− SuL(n)v(n). (32)

We begin by investigating the bias term. Under Assumptions A1–A3, by taking
the expectations from both sides of (32) we obtain

E{w̃(n)} = [IL − σ2
uS]w̃(n− 1). (33)

Defining

A ≜ IL − σ2
uS =

[
(1− µσ2

u)IM 0M×∆L

0∆L×M I∆L

]
, (34)

under Assumption A4 we may obtain from (33)

E{w̃(n)} = Anwo =

[
(1− µσ2

u)
nIM 0M×∆L

0∆L×M I∆L

]
wo, (35)

where we took advantage of the fact that A is a diagonal matrix.
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Introducing wo
1 ≜ [wo

1 wo
2 · · · wo

M ]T and wo
2 ≜ [wo

M+1 wo
M+2 · · · wo

L]
T, we can see

from (35) that

∥E{w̃(n)}∥2 = (1− µσ2
u)

2n∥wo
1∥2 + ∥wo

2∥2. (36)

Thus, different from the case in which the length of the filter matches that of the
optimal solution, if M < L the bias does not vanish as n → ∞, but rather converges
to ∥wo

2∥2. This is reasonable, as the filter cannot properly identify the elements of wo
2.

As for the trace of the covariance matrix, given by (14), we can follow an analogous
line of thought to the one adopted in Sec. 3.1. Thus, we obtain from (15)

C(n) = E{w̃(n− 1)w̃T(n− 1)}−SE{uL(n)u
T
L(n)w̃(n−1)w̃T(n−1)}

− E{w̃(n−1)w̃T(n−1)uL(n)u
T
L(n)}ST

+ SE{uL(n)u
T
L(n)w̃(n−1)w̃T(n−1)uL(n)u

T
L(n)}ST

+ SE{uL(n)u
T
L(n)v

2(n)}ST,

(37)

where we used the fact that S is deterministic. Analogously to (17), in this case we
obtain

E{uL(n)u
T
L(n)w̃(n−1)w̃T(n−1)uL(n)u

T
L(n)} = σ4

uTr{C(n−1)}IL+2σ4
uC(n−1). (38)

Replacing this result in (37), and using Assumptions A1–A3, we obtain

C(n) = C(n− 1)−σ2
uSC(n− 1)− σ2

uC(n− 1)ST

+ σ4
uTr{C(n− 1)}S2+2σ4

uSC(n− 1)ST + S2σ2
uσ

2
v ,

(39)

where we used the fact that SST = S2.
Since Tr{AB} = Tr{BA} for any arbitrary matrices A and B of appropriate

dimensions, we notice that Tr{C(n − 1)ST} = Tr{STC(n − 1)} = Tr{SC(n − 1)},
where we took advantage of the fact that S is symmetric. Thus, taking the trace of
both sides of (39), we obtain after some algebraic manipulations:

Tr{C(n)} = Tr
{
C(n− 1)

}
− 2σ2

uTr
{
SC(n− 1)

}
+ 2σ4

uTr
{
S2C(n− 1)

}
+ µ2Mσ4

uTr{C(n− 1)}+ µ2Mσ2
uσ

2
v .

(40)

Let us introduce c1(n) as the sum of the first M elements in the main diagonal of
C(n), i.e.,

c1(n) ≜
M∑
k=1

[C(n)]k,k (41)

and c2(n) as the sum of the last L−M elements, i.e.,

c2(n) ≜
L∑

k=M+1

[C(n)]k,k. (42)
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Clearly, we can see that
Tr{C(n)} = c1(n) + c2(n). (43)

Furthermore, since S is diagonal, we notice that

Tr
{
SC(n− 1)

}
= µc1(n) (44)

and
Tr

{
S2C(n− 1)

}
= µ2c1(n). (45)

Thus, (40) can be recast as

Tr{C(n)} = αc1(n− 1) + c2(n− 1) + µ2Mσ4
uc2(n− 1) + µ2Mσ2

uσ
2
v , (46)

with α given by (20).
Under Assumption A4, we have that Tr{C(0)} = ∥wo∥2. Since [S]k,k = 0 for

M + 1 ≤ k ≤ L, as can be attested from (31), we notice from (39) that, for these
indices k, [C(n)]k,k = (wo

k)
2 at every iteration n. Thus, we conclude that

c2(n) = ∥wo
2∥2 (47)

for every n. In contrast, for 1 ≤ k ≤ M , [S]k,k = µ and therefore [C(n)]k,k varies
along the iterations. Consequently, so does c1(n), with

c1(0) = ∥wo
1∥2. (48)

Using (43), (47), and (48), by recursively applying (46) we obtain, in a similar
fashion to (22), that

c1(n) = αn∥wo
1∥2 + χ′(1− αn), (49)

where we introduced

χ′ ≜
µM(σ2

v + σ2
u∥wo

2∥2)
2− µ(M + 2)σ2

u

. (50)

Thus, from (43), (47), and (49), we get

Tr{C(n)} = αn∥wo
1∥2 + χ′(1− αn) + ∥wo

2∥2. (51)

From (14), we see that we can obtain the trace of the covariance matrix by
subtracting (36) from (51). Doing so, we finally get

Tr[C(n)]=∥wo
1∥2[αn−(1− µσ2

u)
2n] + χ′(1− αn). (52)

Taking the limit of (52), we can see that, in this case, the trace of the covariance
matrix stabilizes in the steady state at

lim
n→∞

Tr[C(n)] = χ′. (53)

12



Finally, we notice from (9), (36), and (53) that the steady-state MSD is given by

lim
n→∞

MSD(n) = ∥wo
2∥2 + χ′. (54)

Thus, we remark that χ′ does not equal the steady-state MSD, unlike what was
observed in Sec. 3.1 for the case in which M = L, where the steady-state MSD was
equal to χ. This is in accordance with results presented in [38]. In that work, it was
shown that the steady-state EMSE of a deficient length LMS filter had both a bias and
a variance component, unlike the case in which the length of the filter is sufficient in
comparison with the optimal solution. However, this conclusion was reached through a
different path in that reference, and the analysis followed a more traditional approach
without relying on an explicit bias-variance decomposition.

The results above allow us to make some interesting comparisons. For instance,
suppose that we have two scenarios. In both of them, the adaptive filter has M coef-
ficients, but in the first case we have that M < L, whereas in the other the filter
length matches that of the optimal solution, i.e., M = L. In this situation, if we com-
pare (50) with (23), we can easily notice that χ′ > χ, since the value of M is the same
in either scenario. Thus, from (53), we can see that the variance of the elements of
the vector w̃(n) is greater in the former case in comparison with the latter. This can
be interpreted as follows. Since in the first case the LMS algorithm cannot appropri-
ately estimate L−M coefficients of the optimal solution, its error is typically larger in
magnitude in comparison with the case in which M = L. As a result, the elements of
the vector w(n) tend to vary more from one iteration to the other, even in the steady
state. From (50), we can see that, from the perspective of the variance of the estimates,
everything occurs as if the filter were subject to a noise of variance σ2

v + σ2
u∥wo

2∥2 in
the case in which M < L, in contrast to the actual noise variance of σ2

v that affects
the algorithm when M = L.

Let us now consider a different comparison. Suppose that the value of L is the
same in both cases, but that the length of the adaptive filter is different. Once again,
in the first case, we have that M < L, whereas in the other we have M = L. By
comparing the performance obtained in both cases, we can evaluate the impact of an
inadequate choice for M given a certain optimal solution. However, in this situation,
we have to be careful when comparing (50) with (23), since the value of M is not the
same in both cases. Subtracting χ′ with M < L from χ with M = L, we obtain

∆χ ≜ χ− χ′ =
µLσ2

v

2− µ(L+ 2)σ2
u

− µM(σ2
v + σ2

u∥wo
2∥2)

2− µ(M + 2)σ2
u

, (55)

which after some algebra leads to

∆χ = µ ·
{
2σ2

v(1− µσ2
u)(L−M)−Mσ2

u∥wo
2∥2[2− µ(L+ 2)σ2

u])

[2− µ(L+ 2)σ2
u][2− µ(M + 2)σ2

u]

}
. (56)

Depending on the values of M , L, σ2
v , µ, σ

2
u, and ∥wo∥2, (56) may yield a positive or a

negative number, meaning that the variance of the estimates may increase or decrease
when M < L in comparison with the case in which M = L. Moreover, the fact that
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the sign of ∆χ depends on ∥wo
2∥2 shows that the distribution of the coefficients in the

optimal solution wo also influences whether the variance of the estimates increases or
decreases when M < L in comparison with the case in which M = L. Intuitively, the
greater the value of ∥wo

2∥2, the more ∆χ tends to become negative, assuming that all
other parameters remain fixed. Thus, the variance of the estimates tends to increase
in comparison with the case in which M = L. Conversely, the greater the value of
∥wo

2∥2, the more the rhs of (56) tends to be positive, indicating a smaller variance in
comparison with the situation in which M = L. This can be attributed to the fact
that, on the one hand, the variance associated with the L−M that are not estimated
is zero, but on the other hand the variance of the first M coefficients may rise due to
the increased error, as discussed before. If ∥wo

2∥2 is small, the impact of the choice
of M on the estimation error is limited, and is thus outweighed by the zero variance
associated with the L −M coefficients that are not estimated. If ∥wo

2∥2 is large, the
opposite occurs.

Let us now examine the difference in steady-state MSD between the case in which
M = L and another one in which M < L, which we shall denote by ∆MSD(∞).
Comparing Eqs. (28) and (54), we notice that, for a fixed L, ∆MSD(∞) is given by

∆MSD(∞)=µ·
{
2σ2

v(1− µσ2
u)(L−M)−∥wo

2∥2(1 +Mσ2
u)[2− µ(L+ 2)σ2

u])

[2− µ(L+ 2)σ2
u][2− µ(M + 2)σ2

u]

}
. (57)

Once again, the term in the rhs can be positive or negative depending on the values
of the parameters. In order for ∆MSD(∞) to be positive, the trace of the covariance
matrix must decrease when M < L is adopted in comparison with the case in which
M = L. Furthermore, this decrease must compensate for the addition of the norm of
the bias in (54). As a result, ∆MSD(∞) is typically positive only when ∥wo

2∥2 is very
small. Essentially, in this case it is not worth it to try to estimate these coefficients,
since the variance of the estimates outweighs the benefits of identifying them.

3.3 Case 3: M > L

In this case, we must consider the vector w̃(n) given by (7). Thus, if we subtract both
sides of (2) from ωo, and replace (1) and (3) in the resulting equation, we obtain after
some algebra

w̃(n) = [IM − µuM (n)uT
M (n)]w̃(n− 1)− µuM (n)v(n), (58)

which is the expression as (10), with the only difference that in this case we must
highlight that we are considering the M -length regressor vector uM (n), since M ̸=
L. Thus, following a similar line of thought to the one adopted in Sec. 3.1, it is
straightforward to conclude that the squared norm of the bias evolves according to

∥E{w̃(n)}∥2 = (1− µσ2
u)

2n∥ωo∥2, (59)
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which is clearly analogous to (13). However, since ωo is obtained by applying zero
padding to the vector wo, we notice that ∥ωo∥2 = ∥wo∥2. Consequently, (59) coincides
with (13), and we conclude that the latter is valid for M ≥ L as a whole.

In regards to the trace of the covariance matrix, as in the previous sections, we
use (14) with C(n) given by (15). Thus, starting from (58), we still arrive at Eq. (16),
which under Assumptions A1–A4 leads to (18). Consequently, the latter expression
still holds when M > L. The only difference is that in this case the matrix C must be
initialized as

C(0) = ωoωoT =

[
wowoT 0L×∆M

0∆M×L 0∆M×∆M

]
,

where ∆M ≜ M −L. We remark, however, that Tr{C(0)} = ∥wo∥2, as was the case in
Sec. 3.1. As a result, we conclude that the trace of the covariance matrix, in the case in
which M > L, is still given by (24). Moreover, (23) and (27) also hold in this scenario.

The discussion above shows that, if M > L, the norm of the bias vanishes as
n → ∞, just as in the case in which M = L. This is reasonable, since in this case
there is no reason why the filter would not be able to estimate each coefficient of
the optimal solution. Furthermore, both the norm of the bias and the trace of the
covariance matrix are governed by the same expressions as in the situation in which
the length of the filter perfectly matches that of wo. However, since χ depends on M ,
we can see from (27) that the trace of the covariance matrix stabilizes at a greater
value than the one that would be achieved if M = L. More specifically, if we compare
the value of χ in the situation in which M > L with the one achieved when M = L,
which we shall denote by χM and χL, respectively, we notice that

∆χML ≜ χM − χL =
2µσ2

v(1− µσ2
u)(M − L)

[2− µ(M + 2)σ2
u][2− µ(L+ 2)σ2

u]
, (60)

which is always positive assuming that (26) holds. In other words, the variance of the
estimates increases in this scenario in comparison with the case in which M = L. Once
again, this makes sense, since the M −L coefficients of the filter that seek to estimate
the zero elements of ωo should fluctuate with the variations in the estimation error
and thus contribute to the overall variance of the estimates.

3.4 Impulsive Noise

In this section, we discuss the effects of the existence of impulsive noise on our models.
For the sake of simplicity, we focus our discussion on the results of Sec. 3.1, but
the conclusions extend to the scenarios of Secs. 3.2 and 3.3 as well. We begin by
noticing that, impulsive or not, the measurement noise does not affect the bias of the
estimates, as can be seen from Eqs. (11)–(13). As a result, the presence or absence
of impulsive noise does not affect the evolution of the term related to the bias in (9)
whatsoever. The measurement noise only affects the trace of the covariance matrix
along the iterations, as we can see from Eqs. (16)–(24). More specifically, we can see
that the influence of the measurement noise is simply due to its effect on the parameter
χ given by (23). This is reasonable, as we should expect noisier environments to lead
to a greater variance in the estimates of the optimal solution.
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As mentioned previously, so long as Assumption A1 holds, all of the theoretical
results obtained thus far remain valid, regardless of the distribution of v(n). This may
extend, for instance, to scenarios in which v(n) represents some sort of impulsive noise.
The only point of attention is that in this case the parameter σ2

v that appears in our
models must represent the total variance of the measurement noise, considering both
the impulsive and non-impulsive terms, if present. To illustrate this, let us consider
the Bernoulli-Gaussian model [16, 19, 47] for impulsive noise, for example. In this case,
we can write [19]

v(n) = v0(n) + b(n)v1(n), (61)

where v0(n) and v0(n) are two Gaussian noises with zero mean and variances σ2
v0 and

σ2
v1 , respectively, and b(n) is a Bernoulli random variable such that b(n) = 1 with

probability p and b(n) = 0 with probability 1− p at every iteration n. Typically, one
considers σ2

v1
≫ σ2

v0 . Thus, v0(n) represents the background noise, whereas the term
b(n)v1(n) represents the impulsive interference from some source, with the incidence
of impulses represented by a binary Bernoulli distribution, and their amplitudes by
a zero-mean Gaussian distribution [47]. In this case, it can be shown that the total
variance of v(n) is given by [16]

σ2
v = σ2

v0
+ pσ2

v1 . (62)

By replacing (62) in (23) and then in Eq. (24), we can directly apply the theoretical
model to this type of scenario.

As another example, let us consider the Middleton Class-A model [47, 54], for
instance. It seeks to represent a situation in which there is a superposition of statisti-
cally independent sources of impulsive noise. The amplitude of the impulse produced
by the k-th source is modeled as a Gaussian distribution with zero mean and variance

σ2
k = σ2

I

(
k

A

)
+ σ2

G, (63)

where σ2
G denotes the variance of the background noise and σ2

I is the average variance
of the impulsive noise. In its turn, the probability of occurrence of an impulse from
the k-th source is modeled according to a Poisson distribution, i.e.,

Pk = e−A

(
Ak

k!

)
(64)

for k = 0, 1, 2, · · · , where A is a parameter of the Poisson distribution related to the
average number of impulses per time unit and to the duration of a typical interfering
signal [54]. The greater the value of A, the more common the impulsive events are.
The probability density function (pdf) f [v(n)] of the noise is modeled as [54]

f [v(n)] =

∞∑
k=0

PkfG(v;σ
2
k), (65)
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where fG(v;σ
2
k) denotes the zero-mean Gaussian pdf with variance σ2

k. Furthermore,
a parameter of interest when dealing with the Middleton Class-A model is the ratio Γ
between the power of the background noise and the power of the impulsive noise, i.e.,

Γ =
σ2
G

σ2
I

.

It can be shown that the total noise variance is given by

σ2
v = σ2

G + σ2
I (66)

in this case. Thus, our theoretical models can be straightforwardly applied to a scenario
with impulsive noise by replacing (66) in (23).

Evidently, the previous arguments apply to different models for impulsive noise, so
long as we can calculate the total noise variance σ2

v and replace it in (23). Interestingly,
the discussion so far reveals that if we compare two scenarios, one in which v(n) has
a Gaussian distribution, and another one in which it is impulsive, we should not see
any difference between them in terms of both the bias and the variance terms so long
as σ2

v is the same in both cases.

4 Simulation Results

In this section we present simulation results to validate the analyses conducted thus far.
Unless stated otherwise, these results were obtained over an average of 103 indepen-
dent realizations, considering different values for µ and M , in a system identification
setup. In each case, the coefficients of wo are generated randomly following a uni-
form distribution in the range [0, 1], and later normalized so that wo has unit norm.
In Secs. 4.1–4.3, we consider a Gaussian distribution for u(n) with zero mean, and
variance σ2

u =1. In these cases, we already initialize the regressor vectors uL(0) and
uM (0) with L and M samples, respectively, drawn from a Gaussian distribution with
the aforementioned parameters.

Next, we divide the current section in different subsections, one for each type of
scenario considered. In Secs. 4.1, we explore the case in which M = L, whereas in
Sec. 4.2, we examine scenarios in whichM ̸= L. In both of these sections, we consider a
Gaussian distribution for v(n). However, in Sec. 4.3, we study scenarios in the presence
of impulsive noise. Lastly, in Sec. 4.4 we investigate a scenario involving AEC in which
real-world speech signals as the input of the adaptive filter.

4.1 Gaussian Noise, M = L

In this section, we consider a Gaussian distribution for v(n), with zero mean and
variance σ2

v = 0.01. In Fig. 1 we present a comparison between the simulations and
the theoretical results of Eqs. (9), (13), and (24), considering µ=10−3 and M =10.
In Fig. 1(a), we show the norm of the bias, in Fig. 1(b) the trace of the covariance
matrix, and in Fig. 1(c) the overall MSD. In addition to the theoretical curves, we
also indicate the values of χ, np, and ns given by (23), (25), and (29), respectively, by
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dashed lines. In Fig. 1(a), we can see that the theoretical results match the simulations
very closely during the first half of each realization. Interestingly, the norm of the bias
eventually stabilizes at a level of approximately −70 dB, unlike the theoretical curve,
which proceeds with the exponential decay of (13). This discrepancy may be related
to Assumption A2, which does not hold in practice. However, we can see that this
difference between the simulation results and the theoretical model occurs only when
the norm of the bias is negligible and practically ceases to affect the MSD. This can
be attested from Fig. 1(c), in which the theoretical curve practically overlaps with
the simulation results. Furthermore, in Fig. 1(b), we can see that the simulations
match (24) closely, and that (25) correctly predicts the iteration at which the peak
of the trace of the covariance matrix occurs. At n = np, the difference between the
simulation results and the theoretical model is less than 1 dB. Finally, by comparing
Figs. 1(a), (b), and (c), we can see that the iteration ns occurs when the MSD is
approximately only 3 dB higher than its steady-state value, which corresponds to χ.
Up until this point, the norm of the bias is the predominant term in the composition
of the MSD in (9). Thus, in this case, it is the preponderant factor for the performance
during most of the transient phase. In contrast, in the steady state, the MSD is
dominated by the trace of the covariance matrix, which converges to χ, as we should
expect. This can be seen from Figs. 1(b) and (c), and agrees with (27).

In Fig. 2, we repeat the simulations of Fig. 1, but considering µ=10−2. In this case,
we can draw similar conclusions to those obtained from Fig. 1, with a few differences.
Firstly, we observe that the norm of the bias and the trace of the covariance matrix
change places in terms of relevance earlier on, when the MSD is approximately 6.2
dB above its steady-state value. Moreover, comparing Fig. 2(a) with Fig. 1(a), it is
clear that the norm of the bias decays at a faster rate in the former case, considering
the difference in the time scale. Analyzing Figs. 2(b) and 1(b), we notice that, for
µ = 10−2, the trace of the covariance matrix reaches a higher value at steady state
and when the peak occurs, in comparison with the case in which µ=10−3. Combined,
these observations support the idea that, as µ increases, the norm of the bias decays
at a faster rate, but the trace of the covariance matrix increases.

Lastly, in Fig. 3, we present the results for µ = 10−2 and M = 50. Comparing
Figs. 2(a) and 3(a), we can see that the change in the value of M did not alter the
decay rate of the norm of the bias, which is in accordance with our expectations. From
Fig. 3(b), we can see that, in this case, the theoretical model slightly underestimates
the value of np. However, for later iterations, the simulations match the theoretical
curve closely. Finally, in this scenario, we can see that the norm of the bias and the
trace of the covariance matrix change places in terms of relevance in the middle of
the transient, while the MSD is far from its steady-state value χ, unlike what we
observed in the simulations of Figs. 1 and 2. This difference can be attributed to the
fact that both µ and M are greater in this case, in comparison with the other scenarios
considered.

Finally, in order to enable a better understanding of the effects of µ and M on the
trace of the covariance matrix, in Fig. 4, we present the simulation results for Tr[C(n)]
of Figs. 1(b), 2(b), and 3(b). For M = 10, the adoption of a larger µ increases the
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simulation results for µ=
10−3 and L = M=10.
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Fig. 3: Theoretical and
simulation results for µ=
10−2 and L = M=50.
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Fig. 4: Simulation results for the trace of the covariance matrix in the scenarios of
Figs. 1, 2, and 3.

steady-state and peak values of Tr[C(n)]. For µ = 10−2, the increase from M = 10 to
M = 50 seems to practically shift the curve upwards by approximately 8 dB.

4.2 Gaussian Noise, M ̸= L

In this section, we consider the case in which the optimal solution has L = 50 coef-
ficients, as was the case in the simulations of Fig. 3. However, we vary the length of
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Fig. 7: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 49.

the adaptive filter in order to verify the results of Secs. 3.2 and 3.3. Once again, v(n)
is Gaussian with zero mean and variance σ2

v = 0.01 and we adopt µ = 10−2.
In the simulations of Figs. 5, 6, and 7, we show the results obtained with M = 10,

M = 25, and M = 49, respectively. In Figs. 5(a), 6(a), and 7(a) we present the norm
of the bias along the iterations, in Figs. 5(b), 6(b), and 7(b) the trace of the covariance
matrix, and in Figs. 5(c), 6(c), and 7(c) the total MSD.

We can see that the simulation results match the theoretical curves in Figs. 5–
7, which validates the results of Sec. 3.2. Analyzing Figs. 5(a), 6(a), and 7(a), we
can clearly see that the theoretical curve for the bias does not decrease continuously,
unlike what was observed in Fig. 3(a). Furthermore, we can see in these figures that
the norm of the bias stabilizes at the value of ∥wo

2∥2, as was expected. This leads to a
steady-state bias norm of roughly −1 dB in Fig. 5(a), −3.5 dB in Fig. 6(a), and −15
dB in Fig. 7(a), in contrast to the value of −70 dB observed in Fig. 3(a). Evidently,
the impact of varying the value of M , with M < L, may change from one scenario to
the other depending on how the coefficients of the vector wo are distributed, which
influences the value of ∥wo

2∥2. For example, if wo is sparse, gradually increasing M
may not immediately reduce the value of ∥wo

2∥2 due to the presence of a significant
number of zero or near-zero elements in wo. Consequently, the norm of the bias in
the steady state might not change significantly for a certain range of possible choices
for M < L. However, as can be attested from the results obtained, for a fixed L and
M < L, the norm of the bias either decreases or remains unchanged as we increase M ,
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up until the point when they coincide. At this point, the norm of the bias theoretically
tends to zero in the steady state, and increasing M even further does not change this.

Analyzing Figs. 5(b), 6(b), and 7(b), we can also see that, the trace of the covari-
ance matrix increases in the steady state in these scenarios when compared to the
case in which M = L, as can be attested from Fig. 3. However, we notice that, as we
decrease the value of M , the variance of the estimates does not increase monotonically
in the steady state. Comparing Figs. 7(b) and 6(b), we can see that decreasing the
value of M in this case led to an increase in the trace of the covariance matrix during
the steady state. However, comparing Figs. 6(b) and 5(b), we notice that the variance
of the estimates decreases even though we reduce the length of the filter from M = 25
to M = 10.

Finally, comparing Figs. 5(c), 6(c) and 7(c) with Fig. 3(c), we notice that in this
scenario the selection of M < L leads to a deterioration in the performance in com-
parison with the case in which M = L. However, as discussed in Sec. 3.2, this is not
necessarily always the case. To illustrate this, in the simulations of Figs. 8, 9, and 10
we repeat the experiments of Figs. 5, 6, and 3, respectively, but with a different opti-
mal system. In this scenario, the k-th element of wo is generated randomly following
a uniform distribution in the range [0, 1/k2] for k = 1, · · · , 50. Then, the coefficients
were normalized so that wo has unit norm. To facilitate comparisons between the
three scenarios, we adopt the same scale for the y axis in all three figures. Comparing
Figs. 8(a), 9(a), and 10(a), we can see that the smaller the M , the greater the steady-
state norm of the bias, as before. In Figs. 8(b), 9(b), and 10(b), we notice that, for the
three values adopted forM , a shorter filter length leads to a smaller trace of the covari-
ance matrix in the steady state. More interestingly, we notice from Figs. 8(c), 9(c),
and 10(c) that, in this case, adopting M < L leads to an overall decrease in the steady-
state MSD, rather than an increase. This is due to the fact that, in this case, the rise in
the norm of the bias is more than compensated by the reduction in the variance of the
estimates. This can be attributed to the smaller values of ∥wo

2∥2 in comparison with
the scenarios considered in the simulations of Figs. 5 and 6, as discussed in Sec. 3.2.

In the simulations of Figs. 11, 12, and 13, we once again consider the same vector
wo used in the simulations of Figs. 1–7, but the filter length M is set to 51, 60, and
75, respectively. Thus, we consider the scenario in which M > L, which we analyzed in
Sec. 3.3. We can see that once again the simulation results match the theoretical curves
well. There is only a slight discrepancy between the theory and simulation results
during the transient phase in Figs. 13(b) and (c). This may be due to the fact that
the independence theory, i.e., Assumption A2, tends to be more realistic for relatively
small values of M [39]. Regardless, we can see from Figs. 11(a), 12(a), and 13(a) that
the squared norm of the bias becomes negligible in the steady state, similarly to what
was observed in Fig. 3(a). Furthermore, from Figs. 11(b), 12(b), and 13(b), we can see
that the value of the trace of the covariance matrix in steady state rises as we increase
M . This results in a slight deterioration in the steady-state MSD, as can be perceived
from Figs.. 11(c), 12(c), and 13(c). All of this is in accordance with the observations
made in Sec. 3.3.

In order to better understand the possible effects of the choice of M on the steady-
state performance, in Figs. 14(a), (b), and (c) we present the theoretical and simulation
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Fig. 8: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 10, in a scenario in
which each coefficient wo

k

is drawn from U(0, 1/k2)
and then normalized so
that ∥wo∥ = 1.

-60

-50

-40

-30

-20

-10

0

(a
)
‖E
{w̃

(n
)}
‖2

[d
B

]

Theoretical

Simulations

-35

-30

-25

-20

-15

-10

-5

(b
)

T
r[

C
(n

)]
[d

B
]

0.0 0.2 0.4 0.6 0.8 1.0

Iterations (×103)

-35

-30

-25

-20

-15

-10

-5

(c
)

M
S

D
[d

B
]

Fig. 9: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 25 , in a scenario in
which each coefficient wo

k

is drawn from U(0, 1/k2)
and then normalized so
that ∥wo∥ = 1.
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Fig. 10: Theoretical and
simulation results for µ=
10−2 and M = L =
50, in a scenario in
which each coefficient wo

k

is drawn from U(0, 1/k2)
and then normalized so
that ∥wo∥ = 1.

results for the steady-state values of the squared norm of the bias, the trace of the
covariance matrix, and the MSD, respectively, for 1 ≤ M ≤ 100. The step size was set
to µ = 10−2. In order to obtain these results, we increased the number of iterations
from the usual 1000 to 2000 so as to ensure that the algorithm achieved the steady
state for every value of M considered. Then, we calculated the average of the variables
of interest along the course of the last 400 time instants of each realization. We can see
that overall the simulation results match the theoretical values well. From Fig. 14(a),
we notice that the squared norm of the bias gradually decreases as increase M , up
until the point in which M = L = 50. From this point forward, the bias should
vanish according to our theoretical model, but in practice its squared norm stabilizes
at around −55 dB for M = L = 50 and slightly increases to roughly −50 dB for
M = 100. From Fig. 14(b), we can see that the trace of the covariance matrix displays
an interesting behavior in regards to M . As we increase the filter length, its steady-
state value gradually increases, until it reaches a peak and starts to decrease as we
approach the scenario in which M = L. At this particular point, the trace of the
covariance matrix reaches its minimum, and then gradually increase once again as M
becomes larger in comparison with L. As a result, we can observe from Fig. 14(c)
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Fig. 11: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 51.
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Fig. 12: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 50.
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Fig. 13: Theoretical and
simulation results for µ=
10−2 and L = 50, with
M = 75.

that the steady-state MSD is at its minimum when M = L. Comparing Fig. 14(c)
with Figs. 14(a) and (b), for low values of M , we can notice that the steady-state
MSD is dominated by the bias for low values of M , and by the trace of the covariance
matrix when M increases. This is in accordance with our expectations, based on the
discussion presented so far. We remark, however, that the results obtained in Fig. 14
could change depending on the distribution of the coefficients in the optimal solution
wo. This is exemplified by the simulations of Figs. 8–10, in which the steady-state
MSD is smaller for M < L than for M = L. Thus, some care must be taken when
interpreting the results of Fig. 14, but it exemplifies what may occur as we vary the
value of M , and shows that our theoretical model accurately predicts the impact of
each term on the steady-state MSD.

4.3 Effects of Impulsive Noise

In the simulations of this section, we consider M = L = 50 and µ = 10−2. We begin
by comparing three scenarios, each one with a different type of noise. In all three
cases, however, the total noise variance σ2

v is the same. Thus, from Eqs. (13), (23),
and (24), we should expect to see the same results in all three scenarios. We consider:
i) a Gaussian distribution for v(n) with zero mean and variance σ2

v = 0.11, ii) a
Bernoulli-Gaussian model for v(n) with σ2

v0 = 0.01, σ2
v1 = 1 and p = 0.1, resulting in

σ2
v = 0.11 in (62), and iii) the Middleton Class-A model with A = 1, σ2

G = 0.0011,
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Fig. 14: Steady-state values of (a) the squared norm of the bias, (b) the trace of
the covariance matrix, and (c) the MSD for different values of M , with µ = 10−2 and
L = 50.

and σ2
I = 0.1089, which results in σ2

v = 0.11 in Eq. (66) and corresponds to Γ = 0.01.
In Figs. 15(a), (b), and (c) we show the normalized histograms of the measurement
noise for the scenarios i), ii), and iii), respectively, considering all 1000 realizations of
v(n). For reference, in each plot we also represent the Gaussian distribution with zero
mean and variance σ2

v = 0.11 by a solid red line. We can see that the distributions
resulting from the Bernoulli-Gaussian and Middleton models are clearly distinct from
the normal distribution in the scenarios considered.
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Fig. 15: Normalized histograms for the measurement noise, considering the results
from the 1000 realizations. In each plot, we also depict the Gaussian pdf with zero
mean and variance σ2

v = 0.11. (a) scenario i), considering a Gaussian distribution with
zero mean and variance σ2

v = 0.11. (b) Bernoulli-Gaussian model with σ2
v0 = 0.01,

σ2
v1 = 1 and p = 0.1. (c) Middleton Class-A model with A = 1, σ2

G = 0.0011, and
σ2
I = 0.1089

The simulation results for the scenarios i), ii) and iii) described previously are
presented in Figs. 16, 17, and 18, respectively. As was the case in Figs. 1–3, in
Figs. 16(a), 17(a) and 18(a) we present the norm of the bias along the iterations, in
Figs. 16(b), 17(b) and 18(b) the trace of the covariance matrix, and in Figs. 16(c), 17(c)
and 18(c) the total MSD.

Comparing Figs. 16, 17, and 18, we can see that the theoretical curves are the
same for all three scenarios, and that the simulation results obtained are very similar
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Fig. 16: Theoretical and
simulation results for µ=
10−2 and M = 50, con-
sidering a Gaussian distri-
bution for v(n) with zero
mean and σ2

v = 0.11.
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Fig. 17: Theoretical and
simulation results for µ=
10−2 and M = 50,
considering the Bernoulli-
Gaussian model for v(n)
with σ2

v0 = 0.01, p = 0.1
and σ2

v1 = 1.
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Fig. 18: Theoretical and
simulation results for µ=
10−2 and M = 50, con-
sidering the Middleton
Class-A model for v(n)
with A = 1, σ2

G = 0.0011,
and σ2

I = 0.1089.

to one another. Moreover, we notice that the theoretical curves match the simulation
results closely in all three cases. This supports the arguments made in Sec. 3.4 that,
as long as Assumption A1 holds, the variance component of the MSD of the LMS
algorithm only depends on σ2

v , regardless of the distribution of v(n). The results also
show that our theoretical models can be applied to scenarios with impulsive noise, so
long as v(n) is iid along the iterations with zero mean, variance σ2

v and is statistically
independent from any other variable. Finally, comparing Figs. 3 and 16, we can see
that the evolution of the bias is the same in both scenarios, but curves corresponding
to the trace of the covariance matrix are different. This is reasonable, since the only
difference between both scenarios lies in the value of σ2

v . As argued in Sec. 3.4, the
measurement noise influences the value of χ in (23), and therefore has an effect on the
trace of the covariance matrix. However, it does not affect the bias term in Eq. (9)
whatsoever, as we notice from (13).

4.4 Acoustic Echo Cancellation

In this section, we test our theoretical model in an AEC setting. For this purpose, we
adopt real-world speech signals as the input of the adaptive filter. These signals were
downloaded from a publicly available dataset of 40, 000 audio samples with both male
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and female speakers [21, 25]. Since each audio sample is typically around 4 seconds
long, we concatenated the data from six samples and then truncated them to obtain
speech signals that were exactly 20 seconds long. Whenever the sample resulting from
this process was shorter than this, we extended the signal by including a sufficient
number of zeros so as to obtain the desired duration. Moreover, we made sure to
avoid any overlap between the audio signals thus obtained. The room impulse response
has L = 256 coefficients and was determined experimentally inside an automobile
considering a sampling frequency of 8 kHz. It is worth noting that the signals were
downsampled to match the sampling frequency of the experimental setup. We remark
that in this case the optimal solution does not have unit norm, and realistically cannot
be normalized. This is due to the fact that the input signal is not white Gaussian noise.
Hence, depending on the power spectral density of the speech signal, the normalization
of the optimal solution might result in an echo with more power than the input signal,
which is not physically possible. Thus, in our theoretical model, we assume that we
have a perfect knowledge of ∥wo∥2, but in practice we would need to estimate the
norm of the optimal solution. Since the input signal is not wide-sense stationary in
this situation, we estimate the variance of the input signal at each time instant using
a sliding rectangular window of length 160, which corresponds to a 20 ms period. This
value was selected due to the fact that speech signals can be considered approximately
stationary within a 20–40 ms time frame. Then, we run the theoretical model at the
end of every realization considering the estimated variance along the iterations for that
particular experiment. After running all realizations, we take the ensemble average of
the results thus obtained to form the theoretical curves. In this section, we consider
100 independent realizations. We remark that in this case we use Eqs. (12), (18), (33),
and (39), instead of directly applying Eqs. (13), (24), (36), and (52). This modification
was made due to the fact that (13), (24), (36), and (52) are obtained considering that
the variance of the input signal is constant along the iterations, which is not the case
in this scenario. Then, we take the squared norm of the bias vector and the trace of
the covariance matrix, as before. We set µ = 10−2 and M = L = 256.

We consider two scenarios, which are depicted in Figs. 19 and 20, respectively. The
difference between them lies in the value of σ2

v . In the former, we consider σ2
v = 10−3,

whereas in the latter we set σ2
v = 10−4. These values correspond to a signal-to-noise

ratio (SNR) of approximately −2.8 dB and 7.2 dB, respectively, when comparing the
average power of the measurement noise with that of the echo signal. Analyzing Fig 19,
we can see that in the first scenario the theoretical model predicts the behavior of
the algorithm reasonably well. In the case of Fig. 20, we can see that for a higher
SNR, the simulation results do not match the theoretical model as closely. This was
expected, however, given the fact that the Assumption A2 clearly does not hold for
speech signals. Even in this scenario, we can see that the theoretical curves somehow
reflect the tendencies observed in the simulation results from a qualitative perspective.
Furthermore, the model accurately predicts the steady-state value of the trace of the
covariance matrix in Fig. 20(b). Overall, taking into consideration the fact that the
assumptions made do not hold in this case, the theoretical model obtained provides
qualitative insights into the inner workings of the LMS algorithm in an AEC setting,
which was our main goal after all.
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Fig. 19: Theoretical and
simulation results for µ =
10−2 and M = 50, consid-
ering an AEC problem with
σ2
v = 10−3.

−80

−60

−40

−20

0

(a
)
‖E
{w̃

(n
)}
‖2

[d
B

]

Theoretical

Simulations

-60

-50

-40

-30

-20

(b
)

T
r[

C
(n

)]
[d

B
]

0 50 100 150

Iterations (×103)

-40

-35

-30

-25

-20

(c
)

M
S

D
[d

B
]

Fig. 20: Theoretical and
simulation results for µ =
10−2 and M = 50, consid-
ering an AEC problem with
σ2
v = 10−4.

5 Conclusions

In this paper, we carried out the bias-variance decomposition of the MSD of the LMS
algorithm. Our analysis has shown that, during the transient phase, if the filter length
M matches that of the optimal solution, L, the norm of the bias is typically larger
than the trace of the covariance matrix, and is more determinant to the performance
of the algorithm. As the norm of the bias decays exponentially, its relevance is grad-
ually reduced as the algorithm converges, whereas the trace of the covariance matrix
increases, reaches a peak, and stabilizes. As a result, it is the latter that determines
the steady-state performance of the algorithm, which agrees with our expectations.
We also showed that there is a clear trade-off between the bias and variance terms
with respect to the step size. Increasing µ causes the bias term to decrease faster,
but increases the variance of the estimates in the steady state. In contrast, the adop-
tion of lower values for µ lead to a smaller variance in the steady state, but causes
the bias term to decrease more slowly. These results agree with the existing litera-
ture [13, 23, 46, 51]. Moreover, we extended the analysis to the cases in which M ̸= L.
It was shown that, if M < L, the bias term does not vanish in steady state, but rather
stabilizes at a certain value that depends on the optimal solution wo. This is also in
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accordance with existing results [38], and differs from what is observed for M ≥ L. In
contrast, the term related to the variance of the estimates may increase or decrease
as we reduce the value of M , starting at M = L. For M > L, the variance rises as we
increaseM . However, the overall effect of these tendencies on the MSD depends onwo,
and under certain circumstances it is possible to obtain a smaller MSD with M < L
in comparison with the case in which M = L. In other words, while the bias and
variance exhibit a clear trade-off with respect to µ, for a fixed value of L, their behav-
ior in regards to M can be less obvious and depends on the system being identified.
Finally, the impact of impulsive noise was analyzed. It was shown that the presence
or absence of impulsive noise is indifferent to the bias and variance of the estimates.
Instead, only the total variance of the measurement noise determines the performance
of the algorithm. Simulation results support the main findings of our analysis, includ-
ing a scenario with real-world speech data as the input signal. This indicates that the
proposed model can perform fairly well under a wide range of circumstances, including
those closer to the conditions typically found in practical applications.

For future works, we intend to investigate how the analysis presented in this paper
can be extended to VSS algorithms [1, 5, 8, 20, 27, 34, 52, 58]. Moreover, it may be
especially interesting to study the extension of the analysis presented in this paper to
solutions that rely on the bias-variance trade-off of adaptive signal processing tech-
niques, such as the algorithms proposed in [12, 26, 29, 33, 35, 36, 45, 50, 53, 56]. Given
the similarities between the themes of these works and that of this paper, we believe
that this would be a natural fit. Thus, we expect that by expanding our analysis to
these solutions, we could shed more light into the way they operate, which in its turn
could open up opportunities for the proposal of new techniques in the same vein.

Appendix A Deriving Eq. (9)

Let us expand the term inside the expectations in (8). Doing so, we observe that we
can write

C(n) = E{w̃(n)w̃T(n)}−E
{
w̃(n)E{w̃(n)}T

}
− E

{
E{w̃(n)}w̃T(n)

}
+E

{
E{w̃(n)}E{w̃(n)}T

}
.

(A1)

Since E{w̃(n)} is deterministic, we can take it out of the external expectations in
the second, third, and fourth terms of the rhs of (A1), which leads to

C(n)=E{w̃(n)w̃T(n)}−E{w̃(n)}E{w̃(n)}T. (A2)

Taking the trace of both sides in (A2), we obtain

Tr [C(n)]=Tr
[
E{w̃(n)w̃T(n)}

]
−∥E{w̃(n)}∥2, (A3)

where we used the fact that

Tr
[
E{w̃(n)}E{w̃(n)}T

]
= ∥E{w̃(n)}∥2. (A4)

Furthermore, since
Tr[E{w̃(n)w̃T(n)}] = E{∥w̃(n)∥2}, (A5)
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we can rewrite (A3) as

Tr [C(n)]=E{∥w̃(n)∥2}−∥E{w̃(n)}∥2, (A6)

which straightforwardly leads to (9).

Data and Code Availability. Data and/or code generated during the development
of the current study are available from the corresponding author on request

References

[1] Aboulnasr, T., Mayyas, K.: A robust variable step-size LMS-type algorithm: anal-
ysis and simulations. IEEE Transactions on Signal Processing 45(3), 631–639
(1997)
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