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Abstract—In this paper, we analyze the performance of an
algorithm for adaptive diffusion networks that controls the
number of nodes sampled per iteration based on the estimation
error. The goal of this solution is to keep the nodes sampled
while the estimation error is high in magnitude, and to cease
their sampling when it is sufficiently low. Our model shows that
this approach can preserve the convergence rate in comparison
with the case in which every node is sampled permanently, while
slightly improving the steady-state performance.

Index Terms—Adaptive diffusion networks, distributed signal
processing, sampling, transient analysis, steady-state analysis.

I. INTRODUCTION

Adaptive diffusion networks are comprised of a set of
connected nodes, that are able to measure and process data
locally, and that can communicate with other nodes in their
vicinity. These nodes have a collective objective to estimate a
parameter vector of interest in a decentralized manner [1]–[5].
Typically, the distributed learning is carried out in two steps at
each time instant: adaptation and combination. In the former,
each node computes its own local estimate, whereas in the
latter the nodes share their local estimates to form a global
estimate of the vector of interest [1]–[5].

It is often desirable to restrict the amount of data measured
and processed by the nodes, which is known as sampling in
the literature [6], [7]. Thus, by sampling some of the nodes at
each iteration, we can reduce the computational and memory
burdens associated with the learning task. However, there may
also be a negative impact on the convergence rate. Based
on these observations, an adaptive sampling algorithm for
diffusion networks was proposed in [8], and later modified
in [9], resulting in the “Dynamic-Tuning-and-Resetting Adap-
tive Sampling” (DTRAS) algorithm. Its goal is to keep every
node sampled when the estimation error is high in magnitude,
and cease their sampling otherwise. Hence, with a proper
selection of their parameters, it can attain a good convergence
rate, while presenting a lower computational cost in the steady
state. Interestingly, the performance is improved as we sample
less and less nodes in the steady state.

To investigate this, we recently studied the effects of ran-
domly sampling of the nodes [10]. In this paper, our goal is
to extend the theoretical results obtained in [10] to predict the
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behavior of our adaptive sampling algorithm of [9]. In addition
to helping to understand our proposal, we believe that these
results may aid in the development of efficient algorithms for
adaptive diffusion networks.

This paper is organized as follows. In Sec. II, we present the
problem formulation and revisit the DTRAS-dLMS algorithm
of [9]. In Sec. III, we present a theoretical analysis to model
the behavior of DTRAS-dLMS. Lastly, in Secs. IV and V,
we respectively present the simulation results and the main
conclusions of our work.
Notation. We use normal font letters for scalars, boldface
lowercase letters for vectors, and boldface uppercase letters
for matrices. Moreover, (·)T denotes transposition, E{·} the
mathematical expectation, [·]ℓk the element of a matrix located
at its ℓ-th row and k-th column, ∥ · ∥ the Euclidean norm, | · |
the cardinality, ⊗ the Kronecker product, ⊙ the Hadamard
product, and ⌈·⌉ and ⌊·⌋ the ceiling and floor functions,
respectively. We denote the L × L identity matrix by IL,an
L×M matrix of ones by 1L×M , and L-length column vectors
of zeros or ones by 0L and 1L, respectively. We denote
by diag{·} the aggregation of the arguments into a diagonal
matrix and by vec{·} the vectorization of a matrix by stacking
all of its columns together to form a column vector. To simplify
the arguments, we assume real data throughout the paper.

II. REVISITING THE DTRAS-dLMS ALGORITHM

Let us consider a network comprised of V nodes, with labels
k∈{1, · · · , V } and a predefined topology. For each node k, we
call the set of nodes with which it can communicate, including
node k itself, its neighborhood, denoted by Nk. At each time
instant n, each node k has access to an input signal uk(n) and
to a desired signal dk(n), which we model as [1]–[4]

dk(n) = uT
k(n)w

o + vk(n), (1)

where wo is an M -length column vector that represents
an unknown system [1]–[4], and uk(n) = [uk(n) uk(n−
1) · · · uk(n−M+1)]T. Lastly, vk(n) is a zero-mean mea-
surement noise at node k, with variance σ2

vk
.

The objective of the network is to obtain an estimate w of
wo in a distributed manner by solving [1]–[4]

min
w

Jglobal(w)=min
w

∑V
k=1 Jk(w), (2)

where Jk(w) is a local cost function at node k. One of the
most common choices for the Jk(w), k=1, · · · , V is the mean



squared error (MSE) [11], [12]. Hence, one obtains Jk(w) =
MSEk(n)≜E{[dk(n)−uT

k(n)w]2}, where MSEk denotes the
MSE at node k [1]–[4]. It is worth noting that the vector wo

is the optimal solution to (2), and for this reason it is often
referred to as the “optimal solution” in the literature [11], [12].

At each iteration, every node k calculates a local estimate
of wo in order to minimize Jk(w). To this end, it uses
the data available locally, as well as the estimates produced
by neighboring nodes in what is known as the adaptation
step. Then, each node k cooperates with its neighbors to
assemble a combined estimate. This process is known as the
the combination step. The adoption of various strategies for
the adaptation step leads to different algorithms, such as the
dLMS algorithm [1]–[4], the diffusion recursive least squares
(dRLS) [5], diffusion Normalized LMS (dNLMS) [8], [9],
[13], among others [14], [15].

In particular, the DTRAS-dLMS algorithm is obtained by
incorporating the sampling in dLMS. Its adaptation and com-
bination steps are respectively given by [9]{

ψk(n)=wk(n− 1)+µkζk(n)uk(n)ek(n)

wk(n) =
∑

i∈Nk
cikψi(n).

(3a)
(3b)

where ψk and wk are the local and combined estimates of wo

at node k, respectively, µk > 0 is a step size,

ek(n) = dk(n)− uT
k (n)wk(n− 1) (4)

is the estimation error at node k, and ζk(n)∈{0, 1} is a binary
variable. If ζk(n) = 1, in which case we say that node k is
sampled, ψk(n) is updated as usual. On the other hand, when
ζk(n) = 0, (3a) becomes simply ψk(n) =wk(n − 1). In this
case, we say that node k is not sampled, and uT

k (n)wk(n −
1) and ek(n) do not need to be calculated. Finally, cik are
combination weights satisfying [1]–[4]

cik≥0,
∑

i∈Nk
cik=1, and cik=0 for i /∈Nk. (5)

There are many possible rules for the selection of the com-
bination weights. For instance, adopting cik = 1 if i= k and
cik=0 otherwise, leads to a setup in which the nodes do not
exchange their local estimates, which is referred to as the non-
cooperative strategy [1]–[4]. On the other hand, cooperative
strategies include the Uniform, Metropolis, and Hastings rules,
among others [1]–[3], as well as adaptive schemes [16]–[18].
For simplicity, in this paper we focus on static combination
rules. In the simulations, we use Metropolis weights, given by

cik=


1

max{|Nk|, |Ni|}
, if i ̸= k and i ∈ Nk

1−∑
i∈Nk

cik, if i = k

0, otherwise.

Inspired by convex combinations of adaptive filters [19],
instead of directly adapting ζk(n), we use an auxiliary variable
αk(n) ∈ [−α+, α+] such that ζk(n) = 0 for ϕ[αk(n)] < 0.5
and ζk(n)=1 otherwise, with ϕ[·] given by [19]

ϕ[αk(n)] ≜
sgm[αk(n)]− sgm[−α+]

sgm[α+]− sgm[−α+]
, (6)

where sgm[x]=[1+exp(−x)]−1 is a sigmoidal function. In the
literature, α+=4 is usually adopted [19]. For the compactness
of notation, we henceforth write ϕ[αk(n)] as ϕk(n). Thus,
ζk(n) is related to αk(n) by

ζk(n) =

{
1, if αk(n) ≥ 0,
0, otherwise

. (7)

We then introduce the following cost function [8], [9]:

Jαk
(n)=ϕk(n)ρk(n)ζk(n)+[1−ϕk(n)]

∑
i∈Nk

cike
2
i (n), (8)

where the parameter ρk(n) > 0 is introduced to control
the penalty of sampling node k. When the error is high in
magnitude, Jαk

(n) is minimized by making ϕk(n) closer to
one, leading to the sampling of node k. In contrast, when node
k is sampled (ζk = 1) and the error is small in magnitude,
Jαk

(n) is minimized by making ϕk(n) closer to zero, and the
algorithm stops sampling node k [8]. However, when node
k is not sampled (ζk = 0), Jαk

(n) is minimized by making
ϕk(n) closer to one again. This ensures that the sampling of
node k eventually resumes. Hence, the sampling of the nodes
does not cease permanently.

The DTRAS-dLMS algorithm is obtained by selecting

ρk(n) = γ
∑

i∈Nk
cikσ̂

2
vi(n) (9)

in (8), where γ > 1 is a parameter that the designer must
choose that is common to every node in the network. For
compactness of notation, we introduce σ̂2

Nk
≜

∑
i∈Nk

cikσ̂
2
vi ,

with σ̂2
vi denoting an estimate of σ2

vi , which is obtained by the
algorithm proposed in [20].

Then, by taking the derivative of (8) with respect to αk(n),
we get the following stochastic gradient descent rule [9]:

αk(n+ 1) = αk(n) + µζk(n)ϕ
′
k(n)

×
[∑

i∈Nk
cikε

2
i (n)− γσ̂2

Nk
(n)ζk(n)

]
. (10)

where µζk(n) > 0 is a step size, εi(n) is the last measurement
of ei(n) that we have access to, given by εi(n) = ζi(n)ei(n)+

[1− ζi(n)]εi(n− 1), and ϕ′
k(n)=

dϕ[αk(n)]
dαk(n)

[19].
It is suggested in [9] that, if we wish to cease the sampling

of the nodes in at most ∆n iterations after the steady state
is achieved in terms of the Network MSE (NMSE), given by
NMSE(n) ≜ 1

V

∑V
k=1 MSEk(n), we should adopt

µζk(n)=
1

σ̂2
Nk
(n)

{
α+

(γ−1)(ϕ′
0−ϕ′

α+)

[(
ϕ′
0

ϕ′
α+

)1
∆n

−1

]}
, (11)

where ϕ′
0 and ϕ′

α+ denote ϕ′
k evaluated at αk(n) = 0 and

αk(n) = α+, respectively.
DTRAS-dLMS also has a reset mechanism, which sets

αk(n) = α+ if a change in the environment is detected. This
is done to improve the tracking capability of the algorithm.
However, in a stationary environment such as the one con-
sidered in this paper, this mechanism should not come into
play. For this reason, and due to space limitations, we shall
disregard it in this paper and in our analysis.



III. THEORETICAL ANALYSIS

We are interested in analyzing the Network Mean-Squared
Deviation (NMSD), a common performance metric given by

NMSD(n) =
1

V

∑V
k=1 MSDk(n), (12)

where MSDk denotes the MSD at each node k, given by
MSDk(n) = E{∥w̃k(n)∥2}, where w̃k(n) ≜ wo − wk(n)
is the weight-error vector for node k [1], [2].

For compactness of notation, it is convenient to introduce

βij(n) ≜ E{w̃T
i (n)w̃j(n)} (13)

for i = 1, · · · , V and j = 1, · · · , V . It is worth noting that
βkk(n) = E{∥w̃k(n)∥2} = MSDk(n).

Subtracting both sides of (3a) from wo, and replacing (1)
and (4) in the resulting equation, after some algebra, we get

ψ̃k(n) = [IM − µkζk(n)uk(n)u
T
k (n)]w̃k(n− 1)

− µζk(n)uk(n)vk(n),
(14)

where we have defined ψ̃k(n) ≜ wo −ψk(n). Moreover, we
observe from (3b) that

w̃k(n) =
∑

i∈Nk
cikψ̃i(n). (15)

If we multiply both sides of (15) by w̃T
k (n) from the left,

and use (3b) again, we get after some algebraic manipulations

∥w̃k(n)∥2=βkk(n)=
∑
i∈Nk

∑
j∈Nk

cikcjkψ̃
T

j (n)ψ̃i(n). (16)

Replacing (14) in (16) and taking the expectations, we get

βkk(n) =
∑

i∈Nk

∑
j∈Nk

cikcjkxji(n), (17)

where we have introduced

xji(n)≜E

{{
[IM−µζj(n)uj(n)u

T
j (n)]w̃j(n−1)

− µζj(n)uj(n)vj(n)
}T

·
{
[IM−µζi(n)ui(n)u

T
i (n)]w̃i(n−1)

− µζi(n)ui(n)vi(n)
}}

.

(18)

At this point, a few assumptions are necessary:
A1. All the nodes in the network employ the same step size,

i.e., µ1 = · · · = µV = µ > 0;
A2. The vectors w̃i(n − 1) are statistically independent of

uj(n) for any pair i and j. This is a multi-agent version
of the independence theory [11], [12];

A3. The measurement noise vk(n) is independent and iden-
tically distributed (iid), and independent from any other
variable for k = 1, · · · , V ;

A4. The input signals are zero-mean and white Gaussian with
variance σ2

u1
= · · · = σ2

uV
= σ2

u > 0. In other words, the
autocorrelation matrices Ruk

≜ E{uk(n)u
T
k (n)}, k =

1, · · · , V are the same, and are proportional to the identity
matrix, i.e., Ru1

= · · · = RuV
= σ2

uIM ;
A5. At any time instant n, ui(n) is statistically independent

from uj(n) for any pair of nodes i and j, i ̸= j;
A6. For every node k, we shall consider ζk(n) independent

from any other variable, and drawn from a Bernoulli
distribution, such that ζk(n) = 1 with probability pζ(n)
and ζk(n) = 0 with probability 1− pζ(n) for every
node k = 1, · · · , V . Moreover, for any i ̸= j, ζi(n) is
statistically independent from ζj(n).

Assumptions A1–A5 are common in the adaptive diffusion
networks and adaptive filtering literature. In its turn, Assump-
tion A6 does not hold in practice, since the sampling of
node k does depend on e2i (n) of every sampled node i in
its neighborhood. However, it is necessary for the tractability
of the problem, and still leads to a good match between the
simulations and the theoretical results, as shown in Sec. IV.

If j = i in (18), using A3 and A6, and observing that
E{ζi(n)} = E{ζ2i (n)} = pζ(n), we can write

xii(n)=E{w̃T
i (n−1)w̃i(n−1)}

−2µpζ(n)E{w̃T
i (n−1)ui(n)u

T
i (n)w̃i(n−1)}

+µ2pζ(n)E{w̃T
i (n−1)ui(n)u

T
i (n)ui(n)u

T
i (n)w̃i(n−1)}

+µ2pζ(n)σ
2
viE{uT

i (n)ui(n)}.

(19)

Using Assumptions A2 and A4, and following similar
procedures to those used in the analysis of the MSD of the
LMS algorithm, we may write (see pages 803–807 of [21])

E{w̃T
i (n−1)ui(n)u

T
i (n)w̃i(n−1)} = σ2

uβii(n− 1) (20)

and
E{w̃T

i (n−1)ui(n)u
T
i (n)ui(n)u

T
i (n)w̃i(n−1)} =

σ4
u(M + 2)βii(n− 1).

(21)

Thus, (19) can be recast as

xii(n)=θ(n)βii(n− 1) + µ2pζ(n)Mσ2
uσ

2
vi , (22)

with θ(n) defined as

θ(n) ≜ 1− 2µpζ(n)σ
2
u + µ2pζ(n)σ

4
u(M + 2). (23)

We shall now examine xji(n) for j ̸= i. To make this
distinction clearer, we replace the index i by ℓ in the next
expressions. From A6, we can observe that

E{ζj(n)ζℓ(n)} = E{ζj(n)}E{ζℓ(n)} = p2ζ(n). (24)

Using (24), A3 and A6, we can rewrite (18) for ℓ ̸= j as

xjℓ(n)=E{w̃T
j (n−1)w̃ℓ(n−1)}

− µpζ(n)E{w̃T
j (n−1)uj(n)u

T
j (n)w̃ℓ(n−1)}

− µpζ(n)E{w̃T
j (n−1)uℓ(n)u

T
ℓ (n)w̃ℓ(n−1)}

+µ2p2ζ(n)E{w̃T
j (n−1)uj(n)u

T
j (n)uℓ(n)u

T
ℓ (n)w̃ℓ(n−1)}.

(25)

Using A2, A4, and A5, from (25) we can write

E{w̃T
j (n−1)uj(n)u

T
j (n)w̃ℓ(n−1)}

= E{w̃T
j (n−1)ui(n)u

T
i (n)w̃ℓ(n−1)}

= σ2
uβjℓ(n− 1)

(26)



for any pair of nodes ℓ and j, ℓ ̸= j. Furthermore, we notice
that the last expectation in the rhs of (25) can be calculated as

E{w̃T
j (n−1)uj(n)u

T
j (n)uℓ(n)u

T
ℓ (n)w̃ℓ(n−1)}

= σ4
uβjℓ(n− 1).

(27)

Therefore, we may write

xjℓ(n)=τ(n)βjℓ(n− 1), (28)

where we have introduced

τ(n) ≜ 1− 2µpζ(n)σ
2
u + µ2p2ζ(n)σ

4
u. (29)

Hence, replacing (22) and (28) in (17), we obtain, after some
algebraic manipulations,

βkk(n)=θ(n)

V∑
i=1

c2ikβii(n−1)

+τ

V∑
j=1

V∑
ℓ=1
ℓ ̸=j

cjkcℓkβjℓ(n−1)+µ2pζ(n)Mσ2
u

V∑
q=1

c2qkσ
2
vq . (30)

Analogously, for a pair of distinct nodes j and ℓ, we get

βjℓ(n) = θ(n)
∑V

t=1 ctjctℓβtt(n− 1)

+ τ(n)
∑V

r=1

∑V
s=1
s̸=r

crjcsℓβrs(n− 1)

+ µ2pζ(n)Mσ2
u

∑V
z=1czjczℓσ

2
vz.

(31)

We could aggregate the different quantities βkk and βjℓ in
a vector and recast (30) and (31) as a single vector equation.
To this end, let us introduce β(n) ≜ vec{B(n)}, where the
matrix B(n) is built in such a way that [B(n)]ij=βij(n). In
this case, introducing the vector b ≜ vec{IV }, we may write

NMSD(n) =
1

V
bTβ(n). (32)

From (30) and (31), we may write

β(n) = Φ(n)β(n− 1) + µ2pζ(n)Mσ2
uσ, (33)

where Φ(n) is a matrix whose k-th row determines how each
βij(n−1) influences the corresponding term in the current iter-
ation, and σ is a vector that aggregates the information from
the network topology and noise variance from the constant
terms that appear in (30) and (31). Furthermore, it is worth
noting that, if the algorithm is initialized with wk(0) = 0M for
every node k, we have that w̃k(0) = wo. Thus, for any i and
j, we have that βij(0) = E{w̃T

i (0)w̃j(0)} = E{wT
o wo} =

∥wo∥2, and, consequently, β(0) = ∥wo∥21V 2 .
Let us now aggregate the combination weights into a

V × V matrix C, such that [C]ij = cij . Similarly, let
us collect the noise variances in a V × V diagonal ma-
trix Rv , such that its k-th element is equal to σ2

vk
, i.e.,

Rv = diag{σ2
v1 , σ

2
v2 , · · · , σ2

vV
}. In this case, if we define

Σ ≜ CRvC
T, we observe that

Σ=


∑

c2k1σ
2
vk

∑
ck1ck2σ

2
vk

· · · ∑
ck1ckV σ

2
vk∑

ck2ck1σ
2
vk

∑
c2k2σ

2
vk

· · · ∑
ck2ckV σ

2
vk

...
...

. . .
...∑

ckV ck1σ
2
vk

∑
ckV ck2σ

2
vk

· · · ∑
c2kV σ

2
vk

, (34)

where the index k in the summations goes from k = 1 to
k = V . Then, we may write the V 2 × 1 vector σ in (33) as

σ = vec{Σ}. (35)

As for the matrix Φ, from (30) and (31) we obtain that

Φ(n) = Ω(n)⊙ Γ, (36)

where we have introduced

Γ ≜ (C⊗C)T (37)

and
Ω(n) = [Ω1(n) Ω2(n) · · · ΩV (n)], (38)

in which Ωi(n) is a V 2 × V matrix whose elements in the
i-th column are all equal to θ(n), and whose other elements
are all equal to τ(n), i.e.

Ωi(n)=

i-th column
↓


τ(n)· · · τ(n) θ(n) τ(n) · · · τ(n)
τ(n)· · · τ(n) θ(n) τ(n) · · · τ(n)

...
. . .

...
...

...
. . .

...
τ(n)· · · τ(n) θ(n) τ(n) · · · τ(n)︸ ︷︷ ︸

V columns

. (39)

It has been shown in [9] that, in steady state, the maximum
sampling probability for every node k is given by

ps.s.max
=

⌈
(γ − 1)−1

⌉
⌈(γ − 1)−1⌉+max{1, ⌊γ − 1⌋} , (40)

where the index “s.s.” comes from “steady state”. For simplic-
ity, we shall assume that the DTRAS-dLMS simply switches
the sampling probability pζ from 1 to ps.s.max given by (40) at
a certain iteration nswitch. Thus, we may write

pζ(n) =

{
1, if n < nswitch,

ps.s.max , otherwise.
(41)

By considering pζ(n) given by (41) in (23), (29), and (33),
and taking (34)–(40) into account, we can predict the NMSD
performance of the DTRAS-dLMS algorithm. The only ques-
tion left is at which iteration nswitch the sampling probability
transitions from unity to its steady-state value. To answer this,
we must investigate when the algorithm achieves the steady
state in terms of the NMSD. From assumptions A2–A5, we can
write that MSEk(n)≈σ2

uMSDk(n−1)+σ2
vk

, and, consequently,

NMSE(n) ≈ σ2
uNMSD(n− 1) + σ̄2

v , (42)

where we have introduced σ̄2
v ≜

∑V
k=1 σvk

V . During the tran-
sient phase, we have pζ(n) = 1 and therefore, τ(n) = τ0 =
1 − 2µσ2

u + µ2σ4
u. Moreover, if we adopt the approximation

Ωi(n) ≈ τ01V 2×V while the nodes are still sampled, we have
that Φ(n) ≈ Φ0 ≜ τ0Γ during this period. Thus, using (32)
and (33) with the previous approximations, and considering



that β(0) = ∥wo∥2, we conclude that, while the nodes are
still sampled, we may write

NMSD(n) ≈ ∥wo∥2τn0
V

· bTΓn1V 2

+
µ2Mσ2

u

V
bT[IV 2−τ0Γ]

−1[IV 2−τn0 Γ
n]σ. (43)

From (43), we see that the NMSD depends on the network
topology due to the matrix Γ. For simplicity, as an approx-
imation, we consider instead that the network is given by a
complete graph, i.e., one in which every pair of nodes is di-
rectly connected by an edge. In this case, adopting the Uniform
or Metropolis rule leads to Γ≈ ΓC ≜ 1

V 21V 2×V 2 , where the
index C stands for “complete”. An interesting property of this
matrix is that Γn

C = ΓC for any integer n≥ 1. Moreover, in
this case we get that bTΓC1V 2 = V . Lastly, we remark that
it is possible to obtain bT[IV 2 − τ0ΓC ]

−1σ = 1
1−τ0

σ̄2
v [10].

Thus, from (43) and (42) we can write

NMSE(n) ≈ σ2
u∥wo∥2τn−1

0

+

[
µMσ2

u

(2− µσ2
u)V

− µ2Mσ4
uτ

n−1
0

V
+ 1

]
σ̄2
v . (44)

From (44), we notice that, while the nodes are sampled, and
assuming τ0 < 1, the NMSE converges approximately to

χ =

[
µMσ2

u

(2− µσ2
u)V

+ 1

]
σ̄2
v . (45)

Next, we shall consider that the algorithm has achieved
the steady in terms of the NMSE at the time instant n if
NMSE(n)≤(1+δ)χ, where 0<δ≪1 is a constant. From (44)
and (45), after some algebra, we conclude that this holds for

n ≥ ns.s. = 1 +

⌈
ln(δ) + ln(χ)− ln(η)

ln(τ0)

⌉
, (46)

where we introduced η ≜ σ2
u

(
∥wo∥2 − µ2Mσ2

uσ̄
2
v

V

)
for conve-

nience. Finally, the iteration at which the sampling probability
transitions in (41) can be approximated by

nswitch ≈ ns.s. +∆n. (47)

IV. SIMULATIONS

The results presented next were obtained from an ensemble
average of 100 independent realizations. In each experiment,
we consider the network topology presented in Fig. 1a. The
x and y coordinates of each node were generated randomly
from a Uniform distribution in the range [−1, 1]. Then, an
edge was added between two nodes whenever the distance
between them was less than 0.6. The input signal uk(n) and
the measurement noise vk(n) follow Gaussian distributions
with zero mean for each node k, with σ2

uk
=σ2

u=1, whereas
the noise variance σ2

vk
is drawn from a uniform distribution in

the range [0.001, 0.01] for k=1, · · · , V , as shown in Fig. 1b.
We consider M = 10 for both the optimal solution and the
diffusion algorithm, and adopt µ=0.1. The coefficients of the
optimal solution wo are drawn from a Uniform distribution in
the range [−1, 1], and are later normalized so as to obtain

∥wo∥2 = 1. As stated in Sec. II, we adopt Metropolis
combination weights. For the theoretical model, we consider
δ = 0.01 in Eq. (46).

1 5 10 15 20

Node k

0.1

0.5

1

(b
)
σ

2 v
k

×10−2

Fig. 1: (a) Network topology, and (b) noise variance profile
considered in the simulations.

In Fig. 2, we show the theoretical curves as well as the
simulation results obtained with the DTRAS-dLMS algorithm
with γ=25 and ∆n=200 . These parameters were chosen so
as to obtain a significant reduction in the sampling probability
in steady state and a good transient performance. It is worth
noting that in this case (40) yields ps.s.max

= 0.04. For
reference, we also show the results for the dLMS algorithm
with fixed sampling probabilities pζ =1 and pζ = ps.s.max

. In
Fig. 2a we show the NMSD curves, and in Fig. 2b the sampling
probability along the iterations. We notice that, initially, the
DTRAS-dLMS algorithm maintains every node sampled, and
consequently presents the same convergence rate as the dLMS
algorithm with pζ = 1, which is captured by our theoretical
model. Then, after nswitch = 146 iterations, the sampling
probability of the DTRAS-dLMS suddenly decreases. We
observe that the approximation given by Eq. (41) is reasonable
in this case, and we notice that the NMSD of DTRAS-dLMS
begins to decrease until it stabilizes at a steady-state level
approximately 6 dB lower than that of the dLMS algorithm
with every node sampled. This is also predicted by the model
of Sec. III. Overall, we observe that the theoretical curves
match the simulation results well. Lastly, we observe that the
dLMS algorithm with a fixed sampling probability of pζ=0.04
converges approximately to the same level of steady-state
NMSD as the DTRAS-dLMS algorithm, but at a much slower
convergence rate. Simulation results obtained with other values
of M and µ led to similar conclusions, but are omitted here
due to space restrictions.

Lastly, in Fig. 3, we repeat the previous experiment, but
considering ∆n = 1000 for the DTRAS-dLMS algorithm. In
this case, the theoretical model underestimates nswitch, and, as
a result, there is a noticeable mismatch between the simulation
results and the theoretical NMSD curve between n ≈ 2000 and
n ≈ 2800. Overall, the simulations suggest that the theoretical
model for nswitch is fairly accurate for relatively small values
of ∆n, but can lead to poor estimates if ∆n is very large.
Nonetheless, we remark that, typically, it is not desirable to
choose excessively large values for ∆n, since in this case it
takes more iterations for the algorithm to cease the sampling
of the nodes. Thus, the situation depicted in Fig. 3 is not of
practical interest. Nevertheless, in future works we intend to
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Fig. 2: Comparison between the theoretical models and the
simulation results with γ = 25 and ∆n = 100. (a) NMSD
curves, and (b) sampling probability along the iterations.

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

−30

−20

−10

0

0 1000 2000 3000 4000 5000

Iterations

0.0

0.5

1.0

(b
)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

−20

0

(a
)

N
M

S
D

(d
B

)

−40

−30

−20

−10

0

0 250 500 750 1000 1250 1500 1750 2000

0

1

(b
)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

Fig. 3: Comparison between the theoretical models and the
simulation results with γ = 25 and ∆n = 1000. (a) NMSD
curves, and (b) sampling probability along the iterations.

improve our estimate of nswitch. Despite this, it is interesting
to note that the theoretical model still predicts the steady-state
NMSD accurately in this scenario.

V. CONCLUSIONS

In this paper, we derived a theoretical model for the NMSD
of the DTRAS-dLMS algorithm of [9]. The theoretical curves
thus obtained match the simulation results well for relatively
small values of ∆n, which corresponds to the scenario of
greater practical interest. For future works, we intend to refine
our analysis for greater values of ∆n. Our model shows that,
by keeping the nodes sampled in the transient phase, and
ceasing to sample them otherwise, it is possible to obtain
a slightly improved steady-state performance in comparison

with the case in which every node is permanently sampled,
while preserving its convergence rate. Thus, our theoretical
analysis shows that, by managing the sampling of the nodes
in an intelligent manner, it is possible for adaptive diffusion
networks to perform better with less, rather than more, data.
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